题目内容

9.已知$\left\{\begin{array}{l}{2x+y-5≥0}\\{3x-y-5≤0}\\{x-2y+5≥0}\end{array}\right.$,求(x+1)2+(y+1)2的最大值和最小值.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域,
则(x+1)2+(y+1)2的几何意义是区域内的点到定点D(-1,-1)的距离的平方,
由图象知OA的距离最小,OB的距离最大,
由$\left\{\begin{array}{l}{2x+y-5=0}\\{3x-y-5=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即A(2,1),此时(x+1)2+(y+1)2=32+22=9+4=13,
$\left\{\begin{array}{l}{3x-y-5=0}\\{x-2y+5=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,即B(3,4),此时(x+1)2+(y+1)2=42+52=16+25=41,
即(x+1)2+(y+1)2的最大值是41,最小值是13.

点评 本题主要考查线性规划的应用结合两点间的距离关系,利用数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网