题目内容
12.双曲线$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1(p>0)的左焦点在抛物线y2=2px的准线上,则p=( )| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 4 |
分析 求出双曲线的左焦点坐标,代入抛物线的准线方程,求出P即可.
解答 解:双曲线$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1(p>0)的左焦点(-$\sqrt{3+\frac{{p}^{2}}{16}}$,0),
双曲线$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1(p>0)的左焦点在抛物线y2=2px的准线上,
可得:$\sqrt{3+\frac{{p}^{2}}{16}}=\frac{p}{2}$,解得p=4.
故选:D.
点评 本题考查双曲线的简单性质以及抛物线的简单性质的应用,考查计算能力.
练习册系列答案
相关题目
2.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,则f($\frac{3}{2}$)=( )
| A. | $\sqrt{e}$ | B. | $\sqrt{e^3}$ | C. | $\root{3}{e^2}$ | D. | $\root{3}{e}$ |
3.微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中都$\frac{2}{3}$是青年人.
(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:
(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.
附:
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:
| 青年人 | 中年人 | 合计 | |
| 经常使用微信 | 80 | 40 | 120 |
| 不经常使用微信 | 55 | 5 | 60 |
| 合计 | 135 | 45 | 180 |
(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.
附:
| p(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
20.已知函数f(x)=cos2$\frac{ωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是( )
| A. | (0,$\frac{5}{12}$] | B. | (0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$) | C. | (0,$\frac{5}{6}$] | D. | (0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$] |
17.若物体的运动方程是s=t3+t2-1,t=3时物体的瞬时速度是( )
| A. | 27 | B. | 31 | C. | 39 | D. | 33 |
4.已知$\frac{1+i}{2-i}$=a+bi(a、b∈R,i为虚数单位),则a2+b2=( )
| A. | $\frac{2}{5}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{1}{5}$ | D. | 1 |