题目内容
2.已知函数f(x)=$\sqrt{|2x-1|+|x+1|-a}$的定义域为R.(Ⅰ)求实数a的取值范围;
(Ⅱ)若a的最大值为k,且m+n=2k(m>0,n>0),求证:$\frac{1}{m}$+$\frac{4}{n}$≥3.
分析 (Ⅰ)利用绝对值的几何意义,求出表达式的最小值,即可得到a的范围,
(Ⅱ)由(Ⅰ)可得m+n=3,则($\frac{1}{m}$+$\frac{4}{n}$)=$\frac{1}{3}$($\frac{1}{m}$+$\frac{4}{n}$)(m+n)=$\frac{1}{3}$(1+4+$\frac{n}{m}$+$\frac{4m}{n}$),根据基本不等式即可证明.
解答 解:(Ⅰ)∵|2x-1|+|x+1|-a≥0,
∴a≤|2x-1|+|x+1|,
根据绝对值的几何意义可得|2x-1|+|x+1|的最小值为$\frac{3}{2}$,
∴a≤$\frac{3}{2}$,
证明:(Ⅱ)由(Ⅰ)可知a的最大值为k=$\frac{3}{2}$,
∴m+n=3,
∴($\frac{1}{m}$+$\frac{4}{n}$)=$\frac{1}{3}$($\frac{1}{m}$+$\frac{4}{n}$)(m+n)=$\frac{1}{3}$(1+4+$\frac{n}{m}$+$\frac{4m}{n}$)≥$\frac{1}{3}$(5+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$)=3,
问题得以证明.
点评 本题考查绝对值的几何意义,不等式的证明,考查计算能力.
练习册系列答案
相关题目
12.双曲线$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1(p>0)的左焦点在抛物线y2=2px的准线上,则p=( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 4 |
10.过双曲线${x^2}-\frac{y^2}{4}=1$的右焦点且斜率为k的直线,与双曲线的右支只有一个公共点,则实数k的范围为( )
| A. | (-∞,-2]∪[2,+∞) | B. | [0,2] | C. | $[-\sqrt{2},\sqrt{2}]$ | D. | [-2,2] |
7.食品添加剂会引起血脂增高、血压增高、血糖增高等疾病,为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
(1)请将列联表补充完整;
(2)为了研究三高疾病是否与性别有关,请计算出统计量K2,并说明你有多大把握认为患三高疾病与性别有关.
下列的临界值表供参考:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
(1)请将列联表补充完整;
| 患三高疾病 | 不患三高疾病 | 合计 | |
| 男 | 24 | 6 | 30 |
| 女 | 12 | 18 | 30 |
| 合计 | 36 | 24 | 60 |
下列的临界值表供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |