题目内容
等差数列{an}前n项和为Sn,a4+a6=-6.则当Sn取最小值时,n=( )
| A、6 | B、7 | C、8 | D、9 |
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:根据等差数列的性质化简a4+a6=-6,得到a5的值,然后根据a1的值,利用等差数列的通项公式即可求出公差d的值,根据a1和d的值写出等差数列的通项公式,进而写出等差数列的前n项和公式Sn,配方后即可得到Sn取最小值时n的值.点评:
解答:
解:由a4+a6=2a5=-6,解得a5=-3,又a1=-11,
∴a5=a1+4d=-11+4d=-3,解得d=2,
则an=-11+2(n-1)=2n-13,
∴Sn=
=n2-12n=(n-6)2-36,
∴当n=6时,Sn取最小值.
故选:A.
∴a5=a1+4d=-11+4d=-3,解得d=2,
则an=-11+2(n-1)=2n-13,
∴Sn=
| n(a1+an) |
| 2 |
∴当n=6时,Sn取最小值.
故选:A.
点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,掌握等差数列的性质,是一道基础题.
练习册系列答案
相关题目
已知函数f(2x+1)=6x+5,则f(x)的解析式是( )
| A、3x+2 | B、3x+1 |
| C、3x-1 | D、3x+4 |
函数f(x)=x2+2x+1在点(-1,0)处的切线方程为( )
| A、y=x+1 |
| B、y=-x-1 |
| C、y=0 |
| D、y=-4x-4 |
函数f(x)=
+
的定义域为( )
| 1 | ||
|
| 4-x2 |
| A、[-2,0)∪(0,2] |
| B、(-1,0)∪(0,2] |
| C、[-2,2] |
| D、(-1,2] |
已知集合M={1,2},且M∪N={1,2,3},则集合N可以是( )
| A、{1,2} | B、{1,3} |
| C、{2} | D、{1} |