题目内容
8.已知函数f(x)=x3+3x2-9x+m(1)求函数f(x)=x3+3x2-9x+m的单调递增区间;
(2)若函数f(x)在区间[0,2]上的最大值12,求函数f(x)在该区间上的最小值.
分析 (1)求出函数的导函数,直接由导函数大于0求解不等式得答案;
(2)由(1)可得f(x)在(0,2)上的单调性,求得极值,再求出f(0)、f(2)比较得答案.
解答 解:(1)f′(x)=3x2+6x-9=3(x+3)(x-1),
令f′(x)>0,得x>1或x<-3;
令f′(x)<0,得-3<x<1.
∴函数f(x)的增区间为:(-∞,-3),(1,+∞);
(2)由(1)知,f′(x)=3x2+6x-9=3(x+3)(x-1),
令f′(x)=0,得x=1或x=-3(舍).
当x在闭区间[0,2]变化时,f′(x),f(x)变化情况如下表
| x | 0 | (0,1) | 1 | (1,2) | 2 |
| f′(x) | - | 0 | + | ||
| f(x) | m | 单调递减 | m-5 | 单调递增 | 2+m |
当x=1时,f(x)取最小值f(x)min=f(1)=m-5=5.
点评 本题考查利用导数研究函数的单调性,考查了利用导数求函数的最值,是中档题.
练习册系列答案
相关题目
18.设函数f(x),g(x)分别是R上的偶函数和奇函数,则下列结论正确的是( )
| A. | f(x)+g(x)是奇函数 | B. | f(x)-g(x)是偶函数 | C. | f(x)•g(x)是奇函数 | D. | f(x)•g(x)是偶函数 |
19.若A为不等式组$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-x≤2}\end{array}\right.$表示的平面区域,则当a从-2连续变化到1时,则直线x+y=a扫过A中的那部分区域的面积为( )
| A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{4}$ |
16.双曲线$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{2}$=1与椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1(a>0)有相同的焦点,则a的值为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{10}$ | C. | 4 | D. | $\sqrt{34}$ |
13.下列命题中假命题是( )
| A. | ?x∈R,lgx=0 | B. | ?x∈R,sinx+cosx=$\sqrt{3}$ | ||
| C. | ?x∈R,x2+1≥2x | D. | ?x∈R,2x>0 |
20.若a>b>1,0<c<1,则( )
| A. | ac<bc | B. | abc<bac | C. | ca<cb | D. | logac<logbc |
7.已知$\frac{sinα-cosα}{sinα+cosα}$=3,则tan2α等于( )
| A. | 2 | B. | $\frac{4}{3}$ | C. | $-\frac{3}{2}$ | D. | 4 |