题目内容
5.将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2与l2:x+2y=2平行的概率为P1,相交的概率为P2,则点P(36P1,36P2)与圆C:x2+y2=1098的位置关系是( )| A. | 点P在圆C上 | B. | 点P在圆C外 | C. | 点P在圆C内 | D. | 不能确定 |
分析 本题是两个古典概型的问题,试验发生包含的事件是一颗骰子投掷两次,共有36种结果,使得两条直线平行的a,b的值可以通过列举做出,还有一种就是使得两条直线重合,除此之外剩下的是相交的情况,求出概率,从而得到P(2,33),由圆心到点P的距离能判断点P与圆C的位置关系.
解答 解:由题意知本题是两个古典概型的问题,
试验发生包含的事件是一颗骰子投掷两次,第一次出现的点数记为a,
第二次出现的点数记为b,共有36种结果,
要使的两条直线?1:ax+by=2,?2:x+2y=2平行,
则a=2,b=4;a=3;b=6,共有2种结果,
当A=1,B=2时,两条直线平行,
其他33种结果,都使的两条直线相交,
∴两条直线平行的概率p1=$\frac{2}{36}$=$\frac{1}{18}$,
两条直线相交的概率${p}_{2}=\frac{33}{36}$=$\frac{11}{12}$,
∴点P(36P1,36P2)为P(2,33),
点P到圆C:x2+y2=1098的圆心C(0,0)的距离d=$\sqrt{4+1089}$=$\sqrt{1093}$<$\sqrt{1098}=r$,
∴点P在圆内.
故选:C.
点评 本题考查点与圆的位置关系的判断,是中档题,解题时要认真审题,注意概率、两点间距离公式的合理运用.
练习册系列答案
相关题目
15.函数y=3sinx+2的最小正周期是( )
| A. | 1 | B. | 2 | C. | π | D. | 2π |
20.已知f(x)=sin(ωx+φ)(ω>0,|φ|<π)的图象相邻的对称轴之间的距离为2π,将其向左平移$\frac{π}{2}$个单位,所得函数图象与g(x)=cos(ωx+$\frac{π}{3}$)重合,则φ的值为( )
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{7π}{12}$ | D. | $\frac{2π}{3}$ |
3.当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,1≤ax+y≤4恒成立,则实数a的取值范围( )
| A. | [1,$\frac{3}{2}$] | B. | [-1,2] | C. | [-2,3] | D. | [1,$\frac{3}{2}$) |
10.已知f(x)对任意x∈[0,+∞)都有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=x,若函数g(x)=f(x)-loga(x+1)(0<a<1)在区间[0,4]上有两个零点,则实数a的取值范围是( )
| A. | [$\frac{1}{4}$,$\frac{1}{3}$] | B. | [$\frac{1}{4}$,$\frac{1}{3}$) | C. | [$\frac{1}{5}$,$\frac{1}{3}$) | D. | [$\frac{1}{5}$,$\frac{1}{3}$] |