题目内容
11.已知集合A={-1,0,1,2},B={x|(x+1)(x-2)<0},则A∩B=( )| A. | {0,1} | B. | {-1,0} | C. | {-1,0,1} | D. | {0,1,2} |
分析 求出集合B中不等式的解集确定出B,找出A与B的交集即可.
解答 解:由B中不等式解得:-1<x<2,即B={x|-1<x<2},
∵A={-1,0,1,2},
∴A∩B={0,1},
故选:A.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
5.己知直线l的极坐标方程为2ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,点A的极坐标为(2$\sqrt{2}$,$\frac{7π}{4}$),则点A到直线l的距离为( )
| A. | $\frac{5}{2}$$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | $\frac{3}{2}$$\sqrt{2}$ | D. | $\sqrt{2}$ |
19.在激烈的市场竞争中,广告似乎已经变得不可或缺,为了准确把握广告费与销售额之间的关系,某公司对旗下的某产品的广告费用x与销售额y进行了统计,发现其呈线性正相关,统计数据如下表:
根据上表可得回归方程$\widehat{y}$=9.4x+$\widehat{a}$,据此模型可预测广告费用为6万元时销售额为( )
| 广告费用x(万元) | 2 | 3 | 4 | 5 |
| 销售额y(万元) | 26 | 39 | 49 | 54 |
| A. | 63.6万元 | B. | 65.5万元 | C. | 67.7万元 | D. | 72.0万元 |
16.设p:x2-x-20≤0,q:$\frac{9}{x+4}$≥1,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
20.一批产品的合格率为90%,检验员抽检时出错率为10%,则检验员抽取一件产品,检验为合格品的概率是( )
| A. | 0.81 | B. | 0.82 | C. | 0.90 | D. | 0.91 |
1.已知f(x)=$\left\{\begin{array}{l}cosπx(x≤0)\\ f(x-1)+1(x>0)\end{array}\right.$,则f($\frac{4}{3}$)的值为( )
| A. | $\frac{5}{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{3}{2}$ |