题目内容
如图,为圆外一点,由引圆的切线与圆切于点,引圆的割线与圆交于点.已知, .则圆的面积为 .
已知三点A,B,C的坐标分别为A(3,0),B(0,3)C(cosα,sinα),α≠,k∈Z,若=-1,求的值.
设集合A={(x,y)|x,y,1-x-y是三角形的三边长},则A所表示的平面区域(不含边界的阴影部分)是 ( )
直线与圆交于、两点,则( )
A、2 B、-2 C、4 D、-4
设M(1,2)是一个定点,过M作两条相互垂直的直线设原点到直线的距离分别为,则的最大值是 。
如图10-8,在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。
(1)证明:AC⊥SB;
(2)求二面角N—CM—B的大小;
(3)求点B到平面CMN的距离。
如图10-17,在三棱锥V—ABC中,底面△ABC是以∠B为直角的等腰直角三角形,又V在底面ABC上的射影在线段AC上且靠近C点,且AC=4,VA=,VB与底面ABC成45°角。
(1)求V到底面ABC的距离;
(2)求二面角V—AB—C的大小。
如图11-7,四棱锥P—ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E、F分别为CD、PB的中点。
(1)求证EF⊥平面PAB;
(2)设AB=BC,求AC与平面AEF所成的角的大小。
某城市有甲、乙、丙3个旅游景点,一位客人浏览这三个景点的概率分别为0.4,0.5,0.6,且客人是否浏览哪个景点互不影响,设ξ表示客人离开该城市时浏览的景点数与没有浏览的景点数之差的绝对值。
(1)求ξ的分布及数学期望;
(2)记“函数f(x)=x2-3ξx+1,在区间[2,+∞]上单调递增”为事件A,求事件A的概率。