ÌâÄ¿ÄÚÈÝ
1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£®ÔÚ¼«×ø±êϵ£¨ÓëÆ½ÃæÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlµÄ·½³ÌΪ$\sqrt{2}¦Ñsin£¨{¦È-\frac{¦Ð}{4}}£©=3$£®£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³Ì¼°Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèPÊÇÇúÏßCÉϵÄÈÎÒâÒ»µã£¬ÇóµãPµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®
·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦È£¬ÄÜÇó³öÇúÏßCµÄÆÕͨ·½³Ì£»Ö±ÏßlµÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñsin¦È-¦Ñcos¦È=3£¬ÓÉ´ËÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©Éè$P£¨{\sqrt{3}cos¦È£¬sin¦È}£©$£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽÇó³öµãPµ½Ö±ÏßlµÄ¾àÀ룬ÓÉ´ËÄÜÇó³öµãPµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©ÒòΪÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£®
ËùÒÔ${£¨{\frac{x}{{\sqrt{3}}}}£©^2}+{y^2}={cos^2}¦È+{sin^2}¦È=1$£¬
ËùÒÔÇúÏßCµÄÆÕͨ·½³ÌΪ$\frac{x^2}{3}+{y^2}=1$£¬
ÒòΪֱÏßlµÄ·½³ÌΪ$\sqrt{2}¦Ñsin£¨{¦È-\frac{¦Ð}{4}}£©=3$£®
Õ¹¿ªµÃ¦Ñsin¦È-¦Ñcos¦È=3£¬¼´y-x=3£¬
ËùÒÔÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx-y+3=0£»
£¨2£©Éè$P£¨{\sqrt{3}cos¦È£¬sin¦È}£©$£¬
ÔòµãPµ½Ö±ÏßlµÄ¾àÀëΪ$d=\frac{{|{\sqrt{3}cos¦È-sin¦È+3}|}}{{\sqrt{2}}}=\frac{{|{2sin£¨{¦È-\frac{¦Ð}{3}}£©-3}|}}{{\sqrt{2}}}¡Ü\frac{{5\sqrt{2}}}{2}$
µÈºÅ³ÉÁ¢µ±ÇÒ½öµ±$sin£¨{¦È-\frac{¦Ð}{3}}£©=-1$£¬
¼´$¦È=2k¦Ð+\frac{11¦Ð}{6}£¨{k¡ÊZ}£©$£¬¼´$P£¨{\frac{3}{2}£¬-\frac{1}{2}}£©$ʱ³ÉÁ¢£¬
Òò´ËµãPµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óֵΪ$\frac{{5\sqrt{2}}}{2}$£®
µãÆÀ ±¾Ì⿼²éÇúÏߵįÕÍ¨×ø±ê·½³Ì¡¢Ö±ÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éµãµ½Ö±ÏߵľàÀëµÄ×î´óÖµµÄÇ󷨣¬¿¼²éÖ±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ïë¡¢ÊýÐνáºÏ˼Ï룬ÊÇÖеµÌ⣮
| A£® | $2b-\frac{4}{3}$ | B£® | $\frac{3}{2}b-\frac{2}{3}$ | C£® | 0 | D£® | ${b^2}-\frac{1}{6}{b^3}$ |
| A£® | ¦Ñ=$\frac{1}{cos¦È+2sin¦È}$ | B£® | ¦Ñ=$\frac{1}{2sin¦È-con¦È}$ | C£® | ¦Ñ=$\frac{1}{2cos¦È+sin¦È}$ | D£® | ¦Ñ=$\frac{1}{2cos¦È-sin¦È}$ |