题目内容

17.如图,在直角三角形ABC中,∠B=90°,$AB=\frac{1}{2}AC=1$,点M,N分别在边AB和AC上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△A'MN,使顶点A'落在边BC上(A'点和B点不重合).设∠ANM=θ
(1)用θ表示线段AM的长度,并写出θ的取值范围;
(2)求线段A'N长度的最小值.

分析 (1)设MA=MA'=x,则MB=1-x,在Rt△MBA'中,利用三角函数可求;
(2)求线段A'N长度的最小值,即求线段AN长度的最小值,利用三角恒等变换化简,从而求最值.

解答 (本小题满分12分)
解:(1)∵在直角三角形ABC中,∠B=90°,$AB=\frac{1}{2}AC=1$,
∴∠C=30°,∠BAC=60°,∠AMN=120°-θ,…(2分)
设MA=MA′=x,则MB=1-x.在Rt△MBA′中,cos∠BMA′=$\frac{1-x}{x}$,
即cos[180°-2(120°-θ)]=cos(2θ-60°)=$\frac{1-x}{x}$,
∴MA=x=$\frac{1}{1+cos(2θ-60°)}$=$\frac{1}{2co{s}^{2}(θ-30°)}$,…(5分)
∵点M在线段AB上,M点和B点不重合,A′点和B点不重合,
∴45°<120°-θ<90°,
∴30°<θ<75°.                                         …(6分)
(2)由(1)知,在△AMN中,∠ANM=θ,∠AMN=120°-θ,
由正弦定理有$\frac{AN}{sin(120°-θ)}=\frac{AM}{sinθ}$,
∴A′N=AN=$\frac{AMsin(120°-θ)}{sinθ}$=$\frac{sin(120°-θ)}{2co{s}^{2}(θ-30°)sinθ}$       …(8分)
=$\frac{sin[90°+(30°-θ)]}{2co{s}^{2}(θ-30°)sinθ}$=$\frac{cos(30°-θ)}{2co{s}^{2}(θ-30°)sinθ}$=$\frac{1}{2cos(θ-30°)sinθ}$
=$\frac{1}{2sinθ(cosθcos30°+sinθsin30°)}$=$\frac{1}{\sqrt{3}sinθcosθ+si{n}^{2}θ}$
=$\frac{1}{\frac{1}{2}+\frac{\sqrt{3}}{2}sin2θ-\frac{1}{2}cos2θ}$=$\frac{1}{\frac{1}{2}+sin(2θ-30°)}$,…(10分)
∵30°<θ<75°,
∴30°<2θ-30°<120°,当且仅当2θ-30°=90°,
即θ=60°时,A′N有最小值$\frac{2}{3}$.                              …(12分)

点评 本题主要考查在实际问题中建立三角函数模型,从而利用三角函数中研究最值的方法解决最值问题,应注意角的范围的确定是关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网