题目内容

2.已知sin(α+$\frac{π}{3}$)+sinα=-$\frac{4\sqrt{3}}{5}$.-$\frac{π}{2}$<α<0,则sin(-α+$\frac{5π}{6}$)等于(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 利用两角和的正弦函数公式,特殊角的三角函数值化简已知可得sin(α+$\frac{π}{6}$)的值,利用诱导公式化简所求即可得解.

解答 解:因为:$sin(α+\frac{π}{3})+sinα=\frac{3}{2}sinα+\frac{{\sqrt{3}}}{2}cosα=\sqrt{3}sin(α+\frac{π}{6})=-\frac{{4\sqrt{3}}}{5}$,
所以:利用互补角的诱导公式可知:sin(α+$\frac{π}{6}$)=-$\frac{4}{5}$=sin[π-($\frac{π}{6}$+α)]=sin($\frac{5π}{6}$-α)=sin(-α+$\frac{5π}{6}$),
因此:所求的值为$-\frac{4}{5}$.
故选:A.

点评 本题主要考查了两角和的正弦函数公式,特殊角的三角函数值,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网