题目内容
已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则的值为
(A) (B) (C) (D)
某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3.
某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:
现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y计划表示生产甲、乙两种肥料的车皮数.
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.
设椭圆 的右焦点为F,右顶点为A.已知 其中O为原点, 为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点A的直线与椭圆交于点B(B不在轴上),垂直于的直线与交于点M,与轴交于点H,若BF⊥HF,且MOA≤MAO,求直线的斜率的取值范围.
如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为__________.
设变量x,y满足约束条件 则目标函数的最小值为
(A) (B)6 (C)10 (D)17
在△ABC中,角A,B,C的对边分别为a,b,c,已知
(Ⅰ)证明:a+b=2c;
(Ⅱ)求cos C的最小值.
已知椭圆E:(a﹥b﹥0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:|MA|·|MB|=|MC|·|MD|.
对于无穷数列{}与{},记A={|=,},B={|=,},若同时满足条件:①{},{}均单调递增;②且,则称{}与{}是无穷互补数列.
(1)若=,=,判断{}与{}是否为无穷互补数列,并说明理由;
(2)若=且{}与{}是无穷互补数列,求数列{}的前16项的和;
(3)若{}与{}是无穷互补数列,{}为等差数列且=36,求{}与{}的通项公式.