题目内容
设数列{an}的前n项的和为Sn,且{
}是等差数列,已知a1=1,
+
+
=12.
(Ⅰ)求{an}的通项公式an;
(Ⅱ)当n≥2时,an+1+
≥λ-140恒成立,求λ的取值范围.
| Sn |
| n |
| S2 |
| 2 |
| S3 |
| 3 |
| S4 |
| 4 |
(Ⅰ)求{an}的通项公式an;
(Ⅱ)当n≥2时,an+1+
| λ |
| an |
考点:数列的求和
专题:等差数列与等比数列
分析:(I)由于{
}是等差数列,a1=1,
+
+
=12.可得3×
=12,利用等差数列的通项公式可得
=
+d(3-1),解得d=
.可得Sn=
n2-
n.
利用an=Sn-Sn-1即可得出.
(II)an+1+
≥λ-140化为
≥λ,令n-1=t≥1,则
=
=3t+
+145,再利用基本不等式的性质即可得出.
| Sn |
| n |
| S2 |
| 2 |
| S3 |
| 3 |
| S4 |
| 4 |
| S3 |
| 3 |
| S3 |
| 3 |
| S1 |
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
利用an=Sn-Sn-1即可得出.
(II)an+1+
| λ |
| an |
| (n+47)(3n-2) |
| n-1 |
| (n+47)(3n-2) |
| n-1 |
| (t+48)(3t+1) |
| t |
| 48 |
| t |
解答:
解:(I)∵{
}是等差数列,a1=1,
+
+
=12.
∴3×
=12,∴
=4.
∴
=
+d(3-1),即4=1+2d,解得d=
.
∴
=1+
(n-1),
∴Sn=
n2-
n.
∴an=Sn-Sn-1=
n2-
n-[
(n-1)2-
(n-1)]=3n-2(n≥2),
当n=1时,也成立.
∴an=3n-2.
(II)an+1+
≥λ-140化为3n+141+
≥λ,化为
≥λ,
令n-1=t≥1,则
=
=3t+
+145≥3×2
+145=169,当t=4,即n=5时,取等号.
∴λ≤169.
| Sn |
| n |
| S2 |
| 2 |
| S3 |
| 3 |
| S4 |
| 4 |
∴3×
| S3 |
| 3 |
| S3 |
| 3 |
∴
| S3 |
| 3 |
| S1 |
| 1 |
| 3 |
| 2 |
∴
| Sn |
| n |
| 3 |
| 2 |
∴Sn=
| 3 |
| 2 |
| 1 |
| 2 |
∴an=Sn-Sn-1=
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
当n=1时,也成立.
∴an=3n-2.
(II)an+1+
| λ |
| an |
| λ |
| 3n-2 |
| (n+47)(3n-2) |
| n-1 |
令n-1=t≥1,则
| (n+47)(3n-2) |
| n-1 |
| (t+48)(3t+1) |
| t |
| 48 |
| t |
t•
|
∴λ≤169.
点评:本题考查了等差数列的通项公式及其性质、递推式的应用、基本不等式的性质,考查了恒成立问题的等价转化方法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目
| A、2100 | B、2200 |
| C、2300 | D、2400 |
已知向量
、
满足|
|=1,|
|=4,且
•
=2,则
与
的夹角为( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|