题目内容
15.已知函数f(x)=$\left\{\begin{array}{l}sin\frac{x}{4}π,x>0\\ f({x+2}),x≤0\end{array}$,则f(-5)的值为( )| A. | 0 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
分析 利用分段函数的解析式,转化求解即可.
解答 解:函数f(x)=$\left\{\begin{array}{l}sin\frac{x}{4}π,x>0\\ f({x+2}),x≤0\end{array}$,
则f(-5)=f(-5+2)=f(-3)=f(-3+2)=f(-1)=f(-1+2)=f(1)=sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$.
故选:B.
点评 本题考查分段函数的应用,抽象函数求值,三角函数求值,考查计算能力.
练习册系列答案
相关题目
20.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移$\frac{π}{4}$个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
| Asin(ωx+φ) | 0 | 2 | -2 | 0 |
(2)将函数y=f(x)的图象向左平移$\frac{π}{4}$个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
4.
如图一半径为3米的水轮,水轮的圆心O距离水面2米,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(米)与时间x(秒)满足函数关系y=Asin(ωx+φ)+2则有( )
| A. | ω=$\frac{2π}{15}$,A=3 | B. | ω=$\frac{2π}{15}$,A=5 | C. | ω=$\frac{15π}{2}$,A=5 | D. | ω=$\frac{15π}{2}$,A=3 |