题目内容
1.对任意的x>0,总有f(x)=a-x-|lgx|≤0,则a的取值范围是( )| A. | (-∞,lge-lg(lge)] | B. | (-∞,1] | C. | [1,lge-lg(lge)] | D. | [lge-lg(lge),+∞) |
分析 将所求变形为a-x≤|lgx|恒成立,结合图象得到满足条件的a.
解答 解:对任意的x>0,总有f(x)=a-x-|lgx|≤0,即a-x≤|lgx|恒成立,设y=-x+a,g(x)=|lgx|,如图
当直线y=-x+a与g(x)相切时是a的最大值时,设切点为A(x,y),
则-1=(-lgx)',得到x=lge,所以y=-lg(lge),
所以切线方程为:y+lg(lge)=-(x-lge),令x=0得到y=lge-lg(lge),
所以a的取值范围为:(-∞,lge-lg(lge));
故选A.
点评 本题考查了不等式恒成立问题;关键是分解为两个函数图象的位置关系问题,借助于数形结合求得;属于中档题.
练习册系列答案
相关题目
16.在△ABC中,已知BC=1,B=$\frac{π}{3}$,△ABC的面积为$\sqrt{3}$,则AC的长为( )
| A. | 3 | B. | $\sqrt{13}$ | C. | $\sqrt{21}$ | D. | $\sqrt{57}$ |
6.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为80秒.若一名行人来到该路口遇到红灯,则至少需要等待30秒才出现绿灯的概率为( )
| A. | $\frac{3}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{5}$ |
15.已知P是△ABC内一点,且满足2$\overrightarrow{PA}$+3$\overrightarrow{PB}$+4$\overrightarrow{PC}$=$\overrightarrow{0}$,那么S△PBC:SPCA:S△PAB等于( )
| A. | 4:3:2 | B. | 2:3:4 | C. | $\frac{1}{4}$:$\frac{1}{3}$:$\frac{1}{2}$ | D. | $\frac{1}{2}$:$\frac{1}{3}$:$\frac{1}{4}$ |
16.某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.

(Ⅰ)根据频率分布直方图填写下面2×2列联表;
(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
(Ⅰ)根据频率分布直方图填写下面2×2列联表;
| 甲班(A方式) | 乙班(B方式) | 总计 | |
| 成绩优秀 | 12 | 4 | 20 |
| 成绩不优秀 | 38 | 46 | 80 |
| 总计 | 50 | 50 | 100 |
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
| P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |