题目内容

13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,点E、F分别为边CC1、B1C1的中点,点G、H分别在AA1、D1A1上,且满足AA1=3AG,D1H=2HA1,则异面直线EF、GH所成角的余弦值为$\frac{\sqrt{10}}{10}$.

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线EF、GH所成角的余弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
由题意E(0,2,1),F(1,2,2),G(2,0,$\frac{2}{3}$),H($\frac{4}{3}$,0,2),
$\overrightarrow{EF}$=(1,0,1),$\overrightarrow{GH}$=(-$\frac{2}{3}$,0,$\frac{4}{3}$),
设异面直线EF、GH所成角的为θ,
则cosθ=$\frac{|\overrightarrow{EF}•\overrightarrow{GH}|}{|\overrightarrow{EF}|•|\overrightarrow{GH}|}$=$\frac{\frac{2}{3}}{\sqrt{2}•\sqrt{\frac{20}{9}}}$=$\frac{\sqrt{10}}{10}$.
∴异面直线EF、GH所成角的余弦值为$\frac{\sqrt{10}}{10}$.
故答案为:$\frac{\sqrt{10}}{10}$.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网