题目内容

5.求(1+2x-3x25展开式中x5的系数.

分析 先化简所给的式子为:(1+2x-3x25=-(x-1)5(3x+1)5 ,再分别利用二项式定理的展开,展开式中x5的系数.

解答 解:∵(1+2x-3x25 =-(x-1)5(3x+1)5
=-(${C}_{5}^{0}$•x5-${C}_{5}^{1}$•x4+${C}_{5}^{2}$•x3-${C}_{5}^{3}$•x2+${C}_{5}^{4}$•x-${C}_{5}^{5}$)•[${C}_{5}^{0}$•(3x)5+${C}_{5}^{1}$•(3x)4+${C}_{5}^{2}$•(3x)3+${C}_{5}^{3}$•(3x)2+${C}_{5}^{4}$•(3x)+${C}_{5}^{5}$]
故(1+2x-3x25展开式里x5的系数为:-[${C}_{5}^{0}$•${C}_{5}^{5}$-${C}_{5}^{1}$•3${C}_{5}^{4}$+${C}_{5}^{2}$•9${C}_{5}^{3}$-${C}_{5}^{3}$•27${C}_{5}^{2}$+${C}_{5}^{4}$•81${C}_{5}^{1}$-${C}_{5}^{5}$•243${C}_{5}^{0}$]=92.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网