题目内容
2.二项式(x-a)7的展开式中,含x4项的系数为-280,则${∫}_{a}^{2e}$$\frac{1}{x}$dx=( )| A. | ln2 | B. | ln2+1 | C. | 1 | D. | $\frac{{{e^2}-1}}{{4{e^2}}}$ |
分析 在(x-a)7的展开式的通项中,令x的指数为4,求出r值,再表示出x4项的系数,解关于a的方程即可求出a,利用定积分可得结论.
解答 解:(x-a)7的展开式的通项为(-1)r a r C7rx7-r,
令7-r=4得r=3,
∴展开式中x4项的系数(-1)3 a3C73=-35a3=-280,
∴a=2,
∴${∫}_{a}^{2e}$$\frac{1}{x}$dx=lnx${|}_{2}^{2e}$=1.
故选:C.
点评 本题考查二项式定理的应用,解决指定项的系数问题.牢记定理是前提,准确计算是关键.
练习册系列答案
相关题目
13.已知函数f(x)=|lg(x-1)|,若1<a<b且f(a)=f(b),则a+2b的取值范围为( )
| A. | $({3+2\sqrt{2},+∞})$ | B. | $[{3+2\sqrt{2},+∞})$ | C. | (6,+∞) | D. | [6,+∞) |
7.某市春节期间7家超市的广告费支出xi(万元)和销售额yi(万元)数据如下:
(1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)用对数回归模型拟合y与x的关系,可得回归方程:$\widehaty=12lnx+22$,
经计算得出线性回归模型和对数模型的R2分别约为0.75和0.97,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.
参数数据及公式:$\overline x=8\;\;,\;\;\overline y=42$,$\sum_{i=1}^7{{x_i}{y_i}}=2794\;\;,\;\;\sum_{i=1}^7{{x_i}^2}=708$,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\;\;,\;\;\widehata=\overline y-\widehatb\overline x$,ln2≈0.7.
| 超市 | A | B | C | D | E | F | G |
| 广告费支出xi | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
| 销售额yi | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(2)用对数回归模型拟合y与x的关系,可得回归方程:$\widehaty=12lnx+22$,
经计算得出线性回归模型和对数模型的R2分别约为0.75和0.97,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.
参数数据及公式:$\overline x=8\;\;,\;\;\overline y=42$,$\sum_{i=1}^7{{x_i}{y_i}}=2794\;\;,\;\;\sum_{i=1}^7{{x_i}^2}=708$,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\;\;,\;\;\widehata=\overline y-\widehatb\overline x$,ln2≈0.7.