题目内容
已知正项等差{an},lga1,lga2,lga4成等差数列,又bn=
(1)求证{bn}为等比数列.
(2)若{bn}前3项的和等于
,求{an}的首项a1和公差d.
| 1 |
| a2n |
(1)求证{bn}为等比数列.
(2)若{bn}前3项的和等于
| 7 |
| 24 |
考点:等差数列的性质
专题:综合题,等差数列与等比数列
分析:(1)设{an}中首项为a1,公差为d.lga1,lga2,lga4成等差数列,把11和d代入求得d,进而分别当d=0,整理可得 bn+1•bn=1,进而判断出{bn}为等比数列;进而讨论d=a1时,整理即可判断出{bn}为等比数列.
(2)把第一问所求结论分别代入即可求出数列{an}的首项a1和公差d.
(2)把第一问所求结论分别代入即可求出数列{an}的首项a1和公差d.
解答:
(1)证明:设{an}中首项为a1,公差为d.
∵lga1,lga2,lga4成等差数列,∴2lga2=lga1+lga4,
∴a22=a1•a4.
即(a1+d)2=a1(a1+3d),∴d=0或d=a1.
当d=0时,an=a1,bn=
=
,∴
=1,∴{bn}为等比数列;
当d=a1时,an=na1,bn=
=
,∴
=
,∴{bn}为等比数列.
综上可知{bn}为等比数列.
(2)解:当d=0时,S3=
=
,所以a1=
;
当d=a1时,S3=
=
,故a1=3=d.
∵lga1,lga2,lga4成等差数列,∴2lga2=lga1+lga4,
∴a22=a1•a4.
即(a1+d)2=a1(a1+3d),∴d=0或d=a1.
当d=0时,an=a1,bn=
| 1 |
| a2n |
| 1 |
| a1 |
| bn+1 |
| bn |
当d=a1时,an=na1,bn=
| 1 |
| a2n |
| 1 |
| 2na1 |
| bn+1 |
| bn |
| 1 |
| 2 |
综上可知{bn}为等比数列.
(2)解:当d=0时,S3=
| 3 |
| a1 |
| 7 |
| 24 |
| 72 |
| 7 |
当d=a1时,S3=
| 7 |
| 8a1 |
| 7 |
| 24 |
点评:本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆.
练习册系列答案
相关题目
若a,b,c满足c<b<a且ac<0,那么下列选项不一定成立的是( )
| A、ab>ac |
| B、cb2<ab2 |
| C、bc>ac |
| D、ac(a-c)<0 |
已知函数f(x)=3sin
cos
+
sin2
-
+m,若对于任意的-
≤x≤
有f(x)≥0恒成立,则实数m的取值范围是( )
| x |
| 4 |
| x |
| 4 |
| 3 |
| x |
| 4 |
| ||
| 2 |
| π |
| 3 |
| 2π |
| 3 |
A、m≥
| ||||
B、m≥-
| ||||
C、m≥-
| ||||
D、m≥
|