题目内容

在曲线f(x)=x3-2x2+1上点(1,f(1))处的切线方程为
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:根据导数的几何意义求出函数在x=1处的导数,从而得到切线的斜率,再利用点斜式方程写出切线方程即可.
解答: 解:∵f(x)=x3-2x2+1,
∴f′(x)=3x2-4,
∴f′(1)=-1,
∵f(1)=0
∴曲线f(x)=x3-2x2+1上在点(1,f(1))处的切线方程为y=-1(x-1),即x+y-1=0.
故答案为:x+y-1=0.
点评:本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力、推理能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网