题目内容

15.已知函数f(x)=sin($\frac{π}{2}$-x)sinx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$.
(1)求f(x)的最小正周期;
(2)讨论f(x)在[$\frac{π}{6}$,$\frac{5π}{6}$]上的单调性,并求出在此区间上的最小值.

分析 (1)利用诱导公式和辅助角公式将已知函数解析式转化为正弦函数,根据正弦函数的性质来求最小正周期;
(2)根据自变量的取值范围来求正弦函数的值域.

解答 解:(1)f(x)=sin($\frac{π}{2}$-x)sinx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$
=cosxsinx+$\frac{\sqrt{3}(1-2co{s}^{2}x)}{2}$=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x=sin(2x-$\frac{π}{3}$),
属于T=π.
(2)当x∈[$\frac{π}{6}$,$\frac{5π}{6}$]时,2x-$\frac{π}{3}$∈[0,$\frac{4π}{3}$],令2x-$\frac{π}{3}$=$\frac{π}{2}$得x=$\frac{5π}{12}$,
所以f(x)在[$\frac{π}{6}$,$\frac{5π}{12}$]上单调递增,f(x)在[$\frac{5π}{12}$,$\frac{5π}{6}$]上单调递减,
所以f(x)min=f($\frac{5π}{6}$)=sin$\frac{4π}{3}$=-$\frac{\sqrt{3}}{2}$.

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网