题目内容
7.设A={x∈Z|x≤6},B={x∈Z|x>1},那么A∩B等于( )| A. | {x|1<x≤6} | B. | {1,2,3,4,5,6} | C. | {2,3,4,5,6} | D. | {2,3,4,5} |
分析 结合A,B中的元素是整数的特点,运用交集的概念直接求A与B的交集.
解答 解:由A={x∈Z|x≤6},B={x∈Z|x>1},
得A∩B={x∈Z|1<x≤5}={2,3,4,5,6}.
故选:C.
点评 本题考查了交集及其运算,考查了交集的概念,是基础题.
练习册系列答案
相关题目
17.下列导数运算正确的是( )
| A. | (x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$ | B. | (xlnx)′=lnx+1 | C. | (cosx)′=sinx | D. | (2x)′=x2x-1 |
18.已知非零向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a$⊥$\overrightarrow b$,|$\overrightarrow a$+$\overrightarrow b$|=3|$\overrightarrow b$|,则cos<$\overrightarrow a$,$\overrightarrow b$-$\overrightarrow a$>=( )
| A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $-\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
2.下列所给对象能构成集合的是( )
| A. | 某校高一(5)班数学成绩非常突出的男生能组成一个集合 | |
| B. | 《数学1(必修)》课本中所有的难题能组成一个集合 | |
| C. | 性格开朗的女生可以组成一个集合 | |
| D. | 圆心为定点,半径为1的圆内的点能组成一个集合 |