题目内容

6.若函数f(x)是一次函数,且f(f(x))=4x+1,则f(x)=$2x+\frac{1}{3},或-2x-1$.

分析 由题意,设出f(x)=kx+b,利用待定系数法求解即可.

解答 解:函数f(x)是一次函数,设f(x)=kx+b,(k≠0)
f(f(x))=kf(x)+b=k2x+kb+b.
∵f(f(x))=4x+1,即k2x+kb+b=4x+1,
由$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=2}\\{b=\frac{1}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{b=-2}\\{b=-1}\end{array}\right.$
∴f(x)=$2x+\frac{1}{3},或-2x-1$.
故答案为:$2x+\frac{1}{3},或-2x-1$.

点评 本题考查了函数解析式的求法,利用了待定系数法.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网