题目内容
9.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,给出下列两个命题:命题p:若m=$\frac{1}{4}$,则f(f(-1)=0.
命题q:?m∈(-∞,0),方程f(x)=0有解.
那么,下列命题为真命题的是( )
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
分析 分别判断出p,q的真假,从而判断出复合命题的真假即可.
解答 解:若m=$\frac{1}{4}$,则f(f(-1)=f($\frac{1}{2}$)=0,命题p是真命题;
若m<0,则m-x2<0,而2x>0,故f(x)≠0,命题q是假命题;
故p∧(¬q)是真命题,
故选:C.
点评 本题考查了二次函数以及指数函数的性质,考查复合命题的判断,是一道基础题.
练习册系列答案
相关题目
19.
如图,直线在平面α外,直线m1,m2,n均在平面α内,若m1∥m2,且m1,m2均与n相交,下列能证明l⊥α的是( )
| A. | l⊥m1且l⊥m2 | B. | l⊥m1且l⊥n | C. | l⊥m1 | D. | l⊥n |
4.已知双曲线C的左右焦点分别为F1、F2,且F2恰为抛物线y2=8x的焦点.设A为双曲线C与该抛物线的一个交点,若△AF1F2是以AF1的底边的等腰三角形,则双曲线C的离心率为( )
| A. | 1+$\sqrt{3}$ | B. | 1+$\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
1.设复数z=$\frac{1-i}{1+i}$(i为虚数单位),则z=( )
| A. | i | B. | -i | C. | 2i | D. | -2i |
19.若关于x的不等式组$\left\{\begin{array}{l}{{x}^{3}+3{x}^{2}-x-3>0}\\{{x}^{2}-2ax-1≤0}\end{array}\right.$(a>0)的整数解有且仅有一个,则a的取值范围为( )
| A. | [$\frac{3}{4}$,$\frac{4}{3}$] | B. | [$\frac{3}{4}$,$\frac{4}{3}$) | C. | ($\frac{3}{4}$,$\frac{4}{3}$) | D. | ($\frac{3}{4}$,$\frac{4}{3}$] |