题目内容

4.已知双曲线C的左右焦点分别为F1、F2,且F2恰为抛物线y2=8x的焦点.设A为双曲线C与该抛物线的一个交点,若△AF1F2是以AF1的底边的等腰三角形,则双曲线C的离心率为(  )
A.1+$\sqrt{3}$B.1+$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{2}$

分析 求出抛物线的焦点坐标,即可得到双曲线c的值,利用抛物线与双曲线的交点以及△AF1F2是以AF1为底边的等腰三角形,结合双曲线a、b、c关系求出a的值,然后求出离心率.

解答 解:抛物线的焦点坐标(2,0),所以双曲线中,c=2,
因为双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,
由抛物线的定义可知,抛物线的准线方程过双曲线的左焦点,所以$\frac{{b}^{2}}{a}$=2c,
c2=a2+b2=4,解得a=2+$\sqrt{2}$,双曲线的离心率e=$\frac{c}{a}$=1+$\sqrt{2}$.
故选:B.

点评 本题考查抛物线的简单性质以及双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网