题目内容
3.已知$\overrightarrow a=(2,1),\overrightarrow b=(3,m)$,若$\overrightarrow a⊥(\overrightarrow a-\overrightarrow b)$,则$|{\overrightarrow a+\overrightarrow b}|$等于5.分析 利用向量垂直的充要条件:数量积为0;利用向量的数量积公式列出方程求出m,再根据向量模的定义即可求出.
解答 解:∵$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,m),
∴$\overrightarrow{a}$-$\overrightarrow{b}$=(-1,1-m),
∵$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=-2+1-m=0,解得,m=-1,
∴$\overrightarrow{a}$+$\overrightarrow{b}$=(5,0),
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|=5,
故答案为:5.
点评 本题考查向量垂直的充要条件、向量的数量积公式,向量的模,属于基础题.
练习册系列答案
相关题目
8.已知z=($\frac{1+i}{1-i}$)1902+($\frac{1-i}{1+i}$)2017,其中i为虚数单位,则复数z的共轭复数$\overline z$的虚部是( )
| A. | 1 | B. | -i | C. | -1 | D. | i |
15.学校为了了解高三学生每天回归教材自主学习的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天回归教材自主学习的时间超过5小时的学生非常有可能在高考中缔造神奇,我们将他(她)称为“考神”,否则为“非考神”,调查结果如表:
(Ⅰ)根据表中数据能否判断有60%的把握认为“考神”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“考神”和“非考神”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“考神”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| 考神 | 非考神 | 合计 | |
| 男生 | 26 | 24 | 50 |
| 女生 | 30 | 20 | 50 |
| 合计 | 56 | 44 | 100 |
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“考神”和“非考神”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“考神”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |