题目内容
6.已知α,β表示两个不同平面,a,b表示两条不同直线,对于下列两个命题:①若b?α,a?α,则“a∥b”是“a∥α”的充分不必要条件
②若a?α,b?α,则“α∥β”是“α∥β且b∥β”的充要条件.
判断正确的是( )
| A. | ①,②是真命题 | B. | ①是真命题,②是假命题 | ||
| C. | ①是假命题,②是真命题 | D. | ①,②都是假命题 |
分析 在①中,若b?α,a?α,则“a∥b”⇒“a∥α”,反之,“a∥α”推不出“a∥b”;在②中,“α∥β”是“α∥β且b∥β”的充分不必要条件.
解答 解:由α,β表示两个不同平面,a,b表示两条不同直线,知:
①若b?α,a?α,则“a∥b”⇒“a∥α”,
反之,“a∥α”推不出“a∥b”,
∴“a∥b”是“a∥α”的充分不必要条件,故①是真命题.
②若a?α,b?α,则“α∥β”⇒“α∥β且b∥β”,
反之,“α∥β且b∥β”,推不出“α∥β”,
∴“α∥β”是“α∥β且b∥β”的充分不必要条件,故②是假命题.
故选:B.
点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
17.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0,$\frac{π}{3}$),则cos(2$α+\frac{5π}{6}$)=( )
| A. | $±\frac{2\sqrt{2}}{3}$ | B. | $\frac{2\sqrt{2}}{3}$ | C. | -$\frac{2\sqrt{2}}{3}$ | D. | $\frac{1}{3}$ |
14.在椭圆25x2+4y2=100的弦中,以(1,-4)为中点的弦所在直线方程为( )
| A. | 5x+4y-11=0 | B. | 5x-4y-21=0 | C. | 25x+16y-89=0 | D. | 25x-16y-89=0 |
11.在△ABC中,tanA是以-4为第三项,4为第七项的等差数列的公差,tanB是以$\frac{1}{3}$为第三项,9为第六项的等比数列的公比,则这个三角形是( )
| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 无法确定 |