ÌâÄ¿ÄÚÈÝ
1£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µãΪF1£¬F2£¬¹ýµãF1µÄÖ±ÏßÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬Èô$\overrightarrow{A{F}_{1}}$=$\frac{3}{2}$$\overrightarrow{{F}_{1}B}$£¬¡ÏAF2B=90¡ã£¬ÔòÍÖÔ²CµÄÀëÐÄÂÊÊÇ$\frac{\sqrt{5}}{5}$£®·ÖÎö ÓÉÌõ¼þ¿ÉÉè|BF1|=2t£¬|AF1|=3t£¬ÓÉÍÖÔ²µÄ¶¨Ò壬¿ÉµÃ|AF2|=2a-3t£¬|BF2|=2a-2t£¬ÔËÓù´¹É¶¨Àí£¬¿ÉµÃt=$\frac{1}{3}$a£¬Çó³öcosB£¬¡÷F1BF2ÖУ¬ÔËÓÃÓàÏÒ¶¨ÀíºÍÀëÐÄÂʹ«Ê½¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®
½â´ð
½â£ºÓÉ$\overrightarrow{A{F}_{1}}$=$\frac{3}{2}$$\overrightarrow{{F}_{1}B}$£¬¿ÉÉè|BF1|=2t£¬|AF1|=3t£¬
ÓÉÍÖÔ²µÄ¶¨Ò壬¿ÉµÃ|AF2|=2a-3t£¬|BF2|=2a-2t£¬
ÓÉ¡ÏAF2B=90¡ã¿ÉµÃ|AB|2=|AF2|2+|BF2|2£¬
¼´ÓУ¨5t£©2=£¨2a-3t£©2+£¨2a-2t£©2£¬
½âµÃt=$\frac{1}{3}$a£¬|AB|=$\frac{5}{3}$a£¬|BF2|=$\frac{4}{3}$a£¬
ÔÚ¡÷ABF2ÖУ¬cosB=$\frac{|B{F}_{2}|}{|AB|}$=$\frac{4}{5}$£¬
ÔÚ¡÷F1BF2ÖУ¬cosB=$\frac{\frac{4}{9}{a}^{2}+\frac{16}{9}{a}^{2}-4{c}^{2}}{2•\frac{2}{3}a•\frac{4}{3}a}$=$\frac{4}{5}$£¬
»¯¼ò¿ÉµÃ$\frac{9}{4}$•$\frac{{c}^{2}}{{a}^{2}}$=$\frac{9}{20}$£¬
¼´e2=$\frac{1}{5}$£¬¼´Îªe=$\frac{\sqrt{5}}{5}$£®
¹Ê´ð°¸Îª£º$\frac{\sqrt{5}}{5}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄÀëÐÄÂʵÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄ¶¨Ò壬Èý½ÇÐεĹ´¹É¶¨ÀíºÍÓàÏÒ¶¨Àí£¬¿¼²éÏòÁ¿¹²Ïß¶¨Àí£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | e | B£® | e2 | C£® | 2e | D£® | 2e2 |
¢ÙÈôb?¦Á£¬a?¦Á£¬Ôò¡°a¡Îb¡±ÊÇ¡°a¡Î¦Á¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ
¢ÚÈôa?¦Á£¬b?¦Á£¬Ôò¡°¦Á¡Î¦Â¡±ÊÇ¡°¦Á¡Î¦ÂÇÒb¡Î¦Â¡±µÄ³äÒªÌõ¼þ£®
ÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¢Ù£¬¢ÚÊÇÕæÃüÌâ | B£® | ¢ÙÊÇÕæÃüÌ⣬¢ÚÊǼÙÃüÌâ | ||
| C£® | ¢ÙÊǼÙÃüÌ⣬¢ÚÊÇÕæÃüÌâ | D£® | ¢Ù£¬¢Ú¶¼ÊǼÙÃüÌâ |
| A£® | {3} | B£® | {1£¬2£¬4£¬5} | C£® | {1£¬2} | D£® | {1£¬3£¬5} |