题目内容
已知数列{an}满足a1=1,nan+1=(n+1)an+n2+n,n∈N*).
(1)证明:数列{
}是等差数列;
(2)设an=(
)2,求正项数列{bn}的前n项和Sn.
(1)证明:数列{
| an |
| n |
(2)设an=(
| 2nbn |
| 32n+1 |
考点:数列的求和,等差关系的确定,数列递推式
专题:等差数列与等比数列
分析:(1)在nan+1=(n+1)an+n2+n,n∈N*)的两边同时除以n(n+1),能证明数列{
}是首项为1,公差为1的等差数列.
(2)由
=1+(n-1)×1=n,得an=n2,从而
=n,进而bn=
•9n,由此能求出正项数列{bn}的前n项和Sn.
| an |
| n |
(2)由
| an |
| n |
| 2nbn |
| 32n+1 |
| 3 |
| 2 |
解答:
(1)证明:∵数列{an}满足a1=1,nan+1=(n+1)an+n2+n,n∈N*),
∴
=
+1,
∴数列{
}是首项为1,公差为1的等差数列.
(2)解:∵数列{
}是首项为1,公差为1的等差数列,
∴
=1+(n-1)×1=n,∴an=n2,
∵an=(
)2=n2,∴
=n,
∴bn=
•9n,
∴Sn=
(9+92+93+…+9n)
=
×
=
(9n-1).
∴
| an+1 |
| n+1 |
| an |
| n |
∴数列{
| an |
| n |
(2)解:∵数列{
| an |
| n |
∴
| an |
| n |
∵an=(
| 2nbn |
| 32n+1 |
| 2nbn |
| 32n+1 |
∴bn=
| 3 |
| 2 |
∴Sn=
| 3 |
| 2 |
=
| 3 |
| 2 |
| 9(1-9n) |
| 1-9 |
=
| 27 |
| 16 |
点评:本题考查等差数列的证明,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意构造法和等比数列的性质的合理运用.
练习册系列答案
相关题目
y=Asin(ωx+φ)的曲线最高点为(2,
),离它最近的一个最低点是(10,-
),则它的解析式为( )
| 2 |
| 2 |
A、f(x)=
| ||||||
B、f(x)=
| ||||||
C、f(x)=
| ||||||
D、f(x)=-
|
| 3 |
| 5 |
A、
| ||
B、-
| ||
C、
| ||
D、-
|
函数y=cos(2x+1)的导数是( )
| A、y′=sin(2x+1) |
| B、y′=-2xsin(2x+1) |
| C、y′=-2sin(2x+1) |
| D、y′=2xsin(2x+1) |