题目内容
1.如图所示,在四面体中,若直线EF和GH相交,则它们的交点一定( )| A. | 在直线DB上 | B. | 在直线AB上 | C. | 在直线CB上 | D. | 都不对 |
分析 直线EF和GH相交,设交点为M,运用公理2,由此能判断EF与HG的交点在直线BD上.
解答 解:直线EF和GH相交,设交点为M,
∵EF?平面ABD,HG?平面CBD,
∴M∈平面ABD,且M∈平面CBD,
∵平面ABD∩平面BCD=BD,
∴M∈BD,
∴EF与HG的交点在直线BD上.
故选:A.
点评 本题考查两直线的交点在直线上的判断,是基础题,解题时要认真审题,注意平面的基本性质及推论的合理运用.
练习册系列答案
相关题目
12.曲线y=x2 与直线y=x 所围成的封闭图形的面积为( )
| A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{9}$ |
9.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的所有数据.
B地区用户满意度评分:92,60,69,70,76,82,70,85,72,87,67,50,91,96,70,82,94,85,75,59,74,89,77,88,78,67,79,94,78,65,64,73,60,75,86,65,90,84,74,80
(1)完成B地区用户满意度评分的频率分布表并作出频率分布直方图;
B地区用户满意度评分的频率分布表

(2)通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);
(3)根据用户满意度评分,将用户的满意度分为三个等级:
利用样本近似估计总体的思想方法,估计哪个地区用户的满意度等级为不满意的概率大?说明理由.
B地区用户满意度评分:92,60,69,70,76,82,70,85,72,87,67,50,91,96,70,82,94,85,75,59,74,89,77,88,78,67,79,94,78,65,64,73,60,75,86,65,90,84,74,80
(1)完成B地区用户满意度评分的频率分布表并作出频率分布直方图;
B地区用户满意度评分的频率分布表
| 满意度评分分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | |||||
| 频率 |
(2)通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);
(3)根据用户满意度评分,将用户的满意度分为三个等级:
| 满意度评分 | 低于70分 | 70分到89分 | 不低于90分 |
| 满意度等级 | 不满意 | 满意 | 非常满意 |
6.在△ABC中,若A=$\frac{π}{3}$,b=16,此三角形面积S=220$\sqrt{3}$,则a的值是( )
| A. | $20\sqrt{6}$ | B. | 75 | C. | 51 | D. | 49 |
13.已知函数f(x)是奇函数,当x>0时,f(x)=log2(x+1),则f(-3)=( )
| A. | 2 | B. | -2 | C. | 1 | D. | -1 |
10.已知函数f(x)=x3-ax2+4的零点小于3个,则a的取值范围是( )
| A. | (-∞,0] | B. | (-∞,1] | C. | (-∞,2] | D. | (-∞,3] |
11.
函数f(x)=Asin(ωx+φ)的图象如图所示,其中A>0,ω>0,|φ|<$\frac{π}{2}$,则下列关于函数f(x)的说法中正确的是( )
| A. | 在(-$\frac{3π}{2}$,-$\frac{5π}{6}$)上单调递减 | B. | φ=-$\frac{π}{6}$ | ||
| C. | 最小正周期是π | D. | 对称轴方程是x=$\frac{π}{3}$+2kπ (k∈Z) |