题目内容

如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于D,DE⊥AC交AC延长线于点E,OE交AD于点F.求证:ED是⊙O的切线.
考点:圆的切线的判定定理的证明
专题:选作题,立体几何
分析:连接OD,△AOD是等腰三角形,结合,∠BAC的平分线AD,得到OD∥AE可得结论.
解答: 证明:连接OD,
∵OD=OA,
∴∠OAD=∠ADO,
∵∠EAD=∠BAD,
∴∠EAD=∠ADO,
∴OD∥AE,
∴∠AED+∠ODE=180°,
∵DE⊥AC,即∠AED=90°,
∴∠ODE=90°,
∴OD⊥DE,
∴DE是⊙O的切线.
点评:考查了切线的判定定理,能够综合运用角平分线的性质以及平行线分线段成比例定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网