ÌâÄ¿ÄÚÈÝ
14£®Èô¡÷ABCµÄÃæ»ýS¡÷ABC¡Ê[$\frac{\sqrt{3}}{2}$£¬$\frac{3\sqrt{3}}{2}$]£¬ÇÒ$\overrightarrow{AB}$•$\overrightarrow{BC}$=3£¬ÔòÏòÁ¿$\overrightarrow{BA}$Óë$\overrightarrow{BC}$¼Ð½ÇµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©| A£® | [$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{2}$] | B£® | [$\frac{3¦Ð}{4}$£¬$\frac{5¦Ð}{6}$] | C£® | [$\frac{2¦Ð}{3}$£¬¦Ð£© | D£® | [$\frac{2¦Ð}{3}$£¬$\frac{5¦Ð}{6}$] |
·ÖÎö ÀûÓÃÏòÁ¿µÄÊýÁ¿»ý½áºÏÈý½ÇÐεÄÃæ»ý¹«Ê½£¬Áгö²»µÈʽÇó³öÁ½¸öÏòÁ¿¼Ð½ÇµÄ·¶Î§£®
½â´ð ½â£º¡ß¡÷ABCµÄÃæ»ýS¡÷ABC¡Ê[$\frac{\sqrt{3}}{2}$£¬$\frac{3\sqrt{3}}{2}$]£¬
¡àS¡÷ABC=$\frac{1}{2}\left|\overrightarrow{AB}\right|\left|\overrightarrow{BC}\right|sinB$=$\frac{1}{2}$•$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{cos£¨¦Ð-B£©}$•sinB=$-\frac{3tanB}{2}$¡Ê[$\frac{\sqrt{3}}{2}$£¬$\frac{3\sqrt{3}}{2}$]£¬
¿ÉµÃtanB¡Ê$[-\sqrt{3}£¬-\frac{\sqrt{3}}{3}]$£¬¡àB¡Ê[$\frac{2¦Ð}{3}$£¬$\frac{5¦Ð}{6}$]£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ý¹«Ê½¡¢¿¼²éÈý½ÇÐεÄÃæ»ý¹«Ê½¡¢¿¼²é½âÈý½Ç²»µÈʽµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®ÒÑÖª²»µÈʽ×é$\left\{\begin{array}{l}{2x-y+4¡Ý0}\\{x+y-3¡Ü0}\\{y¡Ý0}\end{array}\right.$£¬¹¹³ÉÆ½ÃæÇøÓò¦¸£¨ÆäÖÐx£¬yÊDZäÁ¿£©£¬ÔòÄ¿±êº¯Êýz=3x+6yµÄ×îСֵΪ£¨¡¡¡¡£©
| A£® | -3 | B£® | 3 | C£® | -6 | D£® | 6 |
6£®ÏÂÁи÷×麯ÊýÖУ¬±íʾͬһ¸öº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | y=1£¬y=$\frac{x}{x}$ | B£® | y=x£¬y=$\root{3}{{x}^{3}}$ | ||
| C£® | y=$\sqrt{x-1}$¡Á$\sqrt{x+1}$£¬y=$\sqrt{{x}^{2}-1}$ | D£® | y=|x|£¬$y={£¨{\sqrt{x}}£©^2}$ |
3£®ÍÖÔ²$\frac{x^2}{4}+{y^2}=1$µÄ½¹µãΪF1£¬F2£¬µãMÔÚÍÖÔ²ÉÏ£¬ÇÒMÔÚÒÔF1F2Ϊֱ¾¶µÄÔ²ÉÏ£¬ÔòMµ½yÖáµÄ¾àÀëΪ£¨¡¡¡¡£©
| A£® | $\frac{{2\sqrt{3}}}{3}$ | B£® | $\frac{{2\sqrt{6}}}{3}$ | C£® | $\frac{{\sqrt{3}}}{3}$ | D£® | $\sqrt{3}$ |