ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²×¶ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬¶¨µã$A£¨{0£¬-\sqrt{3}}£©$£¬F1£¬F2ÊÇÔ²×¶ÇúÏßCµÄ×ó¡¢ÓÒ½¹µã£®£¨1£©ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çó¾¹ýµãF1ÇÒÆ½ÐÐÓÚÖ±ÏßAF2µÄÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©É裨1£©ÖÐÖ±ÏßlÓëÔ²×¶ÇúÏßC½»ÓÚM£¬NÁ½µã£¬Çó$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$£®
·ÖÎö £¨1£©½«ÇúÏߵIJÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÓÉÍÖÔ²µÄ±ê×¼·½³ÌÈ·¶¨Ïà¹ØµãµÄ×ø±ê£¬ÔÙÓɵãбʽд³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£¬×îºóת»¯Îª¼«×ø±ê·½³Ì¼´¿É
£¨2£©½«Ö±Ïß·½³ÌÓëÍÖÔ²±ê×¼·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨ÀíºÍÄÜÇó³ö$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$£®
½â´ð ½â£º£¨1£©¡ßÔ²×¶ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÆÕͨ·½³ÌΪC£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£¬¡àA£¨0£¬-$\sqrt{3}$£©£¬F2£¨1£¬0£©£¬F1£¨-1£¬0£©
¡àkAF2=$\sqrt{3}$£¬l£ºy=$\sqrt{3}$£¨x+1£©
¡àÖ±Ïßl¼«×ø±ê·½³ÌΪ£º¦Ñsin¦È=$\sqrt{3}$¦Ñcos¦È+$\sqrt{3}$£¬
¼´2¦Ñsin£¨¦È-$\frac{¦Ð}{3}$£©=$\sqrt{3}$£®
£¨2£©£¨2½«Ö±Ïßy=$\sqrt{3}$£¨x+1£©´úÈëÍÖÔ²±ê×¼·½³Ì$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£¬µÃ5x2+8x=0£¬
ÉèM£¨x1£¬y1£¬N£¨x2£¬y2£¬Ôòx1+x2=-$\frac{8}{5}$£¬x1x2=0£¬
$\overrightarrow{{F}_{1}M}$=£¨x1+1£¬y1£©£¬$\overrightarrow{{F}_{2}M}$=£¨x2+1£¬y2£©£¬
¡à$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$=£¨1+$\sqrt{3}$£©£¨x1+1£©£¨x2+1£©=£¨1+$\sqrt{3}$£©[x1x2+£¨x1+x2£©+1]
=£¨1+$\sqrt{3}$£©]£¨1-$\frac{8}{5}$£©
=-$\frac{3}{5}$-$\frac{3\sqrt{3}}{5}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ²ÎÊý·½³Ì£¬±ê×¼·½³Ì¼°Æä»¥»¯£¬Ö±ÏßµÄÖ±½Ç×ø±ê·½³Ì¼°ÓëÆä¼«×ø±ê·½³ÌµÄ»¥»¯£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÇóÏཻÏÒ³¤µÄ·½·¨£®
| A£® | {x|x=2k-1£¬k¡ÊN+} | B£® | {x|x=4k¡À1£¬k¡ÊN+} | ||
| C£® | {x|x=2k-1£¬k¡ÊNÇÒk£¾1} | D£® | {x|x=2k+3£¬k¡ÊN} |
| A£® | £¨-1£¬$\frac{1}{3}$£©¡È£¨$\frac{1}{3}$£¬+¡Þ£© | B£® | £¨-1£¬+¡Þ£© | C£® | £¨-1£¬3£©¡È£¨3£¬+¡Þ£© | D£® | £¨-¡Þ£¬-1£© |
| A£® | [$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{2}$] | B£® | [$\frac{3¦Ð}{4}$£¬$\frac{5¦Ð}{6}$] | C£® | [$\frac{2¦Ð}{3}$£¬¦Ð£© | D£® | [$\frac{2¦Ð}{3}$£¬$\frac{5¦Ð}{6}$] |