题目内容

12.已知数列{an}的前n项和为Sn,且满足:a1=1,an+an+1=3n+2(n∈N*),则Sn=$\left\{\begin{array}{l}{\frac{3{n}^{2}+4n}{4},n为偶数}\\{\frac{3{n}^{2}+4n-3}{4},n为奇数}\end{array}\right.$.

分析 确定奇数项、偶数项均以3为公差的等差数列,可得a2n-1=3n-2,a2n=3n+1,再分类讨论,运用等差数列的求和公式,即可得出结论.

解答 解:∵数列{an}满足a1=1,an+an+1=3n+2,
∴a2+a1=5,a3+a2=8,a4+a3=11,a5+a4=14,a6+a5=17,…,
∴a2=4,a3=4,a4=7,a5=7,a6=10,…,
∴奇数项、偶数项均以3为公差的等差数列,
∴a2n-1=3n-2,a2n=3n+1,
n=2k时,Sn=$\frac{k(1+3k-2)}{2}$+$\frac{k(4+3k+1)}{2}$
=3k2+2k=$\frac{3{n}^{2}+4n}{4}$;
n=2k-1时,Sn=S2k-a2k=3k2+2k-3k-1
=3k2-k-1=$\frac{3{n}^{2}+4n-3}{4}$,
∴Sn=$\left\{\begin{array}{l}{\frac{3{n}^{2}+4n}{4},n为偶数}\\{\frac{3{n}^{2}+4n-3}{4},n为奇数}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{\frac{3{n}^{2}+4n}{4},n为偶数}\\{\frac{3{n}^{2}+4n-3}{4},n为奇数}\end{array}\right.$.

点评 本题考查数列的通项与求和,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网