题目内容

2.已知定义在R上的函数$f(x)={({\frac{1}{3}})^{|x-t|}}$+2(t∈R)为偶函数,记a=f(-log34),b=f(log25),c=f(2t),a,b,c大小关系为(  )
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

分析 根据题意,由函数奇偶性的性质可得f(-x)=f(x),即$(\frac{1}{3})^{|x-t|}$+2=$(\frac{1}{3})^{|-x-t|}$+2,分析可得t=0,即可得f(x)的解析式,将其写成分段函数的形式,分析可得其在区间(0,+∞)上为减函数,进而可得a=f(-log34)=f(log34),b=f(log25),c=f(2t)=f(0),比较自变量的大小,结合函数的单调性即可得答案.

解答 解:定义在R上的函数$f(x)={({\frac{1}{3}})^{|x-t|}}$+2(t∈R)为偶函数,
则有f(-x)=f(x),即$(\frac{1}{3})^{|x-t|}$+2=$(\frac{1}{3})^{|-x-t|}$+2,
分析可得t=0,即$f(x)={({\frac{1}{3}})^{|x|}}$+2=$\left\{\begin{array}{l}{{\frac{1}{3}}^{x}+2,x≥0}\\{{3}^{x}+2,x<0}\end{array}\right.$,在区间(0,+∞)上为减函数,
a=f(-log34)=f(log34),b=f(log25),c=f(2t)=f(0),
又由0<log34<log25,
则有b<a<c;
故选:C.

点评 本题考查函数奇偶性与单调性的综合,关键是分析求出t的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网