题目内容

7.已知函数f(x)=lnx+x,则曲线f(x)在点P(1,f(1))处的切线与两坐标轴围成的三角形的面积为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

分析 根据求导公式求出函数的导数,把x=1代入求出切线的斜率,代入点斜式方程并化简,分别令x=0和y=0求出切线与坐标轴的交点坐标,再代入面积公式求解.

解答 解:由题意得y′=$\frac{1}{x}$+1,则在点M(1,1)处的切线斜率k=2,
故切线方程为:y-1=2(x-1),即y=2x-1,
令x=0得,y=-1;令y=0得,x=$\frac{1}{2}$,
∴切线与坐标轴围成三角形的面积S=$\frac{1}{2}×1×\frac{1}{2}$=$\frac{1}{4}$,
故选:A.

点评 本题考查导数知识的运用,考查三角形面积的计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网