题目内容
如果f(x+y)=f(x)·f(y)且f(1)=1,则等于( )
A.1005 B.1006 C.2008 D.2010
设分别为双曲线的左、右焦点,A为双曲线的左顶点,以为直径的圆与双曲线某条渐近线交于M,N两点,且,则该双曲线的离心率为( )
A. B. C. D.
如图,在三棱柱中,,,,在底面的射影为的中点,是的中点.
(1)证明:平面;
(2)求二面角的平面角的余弦值.
若复数(是虚数单位),则( )
观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
……
照此规律,第个等式为 。
在复平面内,复数 对应的点与原点的距离是( )
为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:
(ⅰ)顾客所获的奖励额为60元的概率;
(ⅱ)顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.
甲、乙两人各用篮球投篮一次,若两人投中的概率都是,则恰有一人投中的概率是( )
如图,为测得河对岸塔的高,先在河岸上选一点,使在塔底的正东方向上,测得点的仰角为,再由点沿北偏东,方向走10米到位置,测得,则塔的高度为( )
A.10米 B.米 C.米 D.米