题目内容
已知数列{an}的通项公式an=2n(n+1),证明:
+
+…+
<
(n∈N*).
| 1 |
| a1-1 |
| 1 |
| a2-1 |
| 1 |
| an-1 |
| 2 |
| 3 |
考点:数列的求和
专题:等差数列与等比数列
分析:an=2n(n+1),可得:当n≥2时,
=
<
=
(
-
),利用“裂项求和”与“放缩法”即可得出.
| 1 |
| an-1 |
| 1 |
| 2n2+2n-1 |
| 1 |
| 2n2+2n-4 |
| 1 |
| 6 |
| 1 |
| n-1 |
| 1 |
| n+2 |
解答:
证明:∵an=2n(n+1),
∴当n≥2时,
=
<
=
(
-
),
∴
+
+…+
<
+
[(1-
)+(
-
)+(
-
)+(
-
)+…+(
-
)]
=
+
(1+
+
-
-
-
)
<
+
×(1+
+
)=
<
=
(n∈N*).
∴
+
+…+
<
(n∈N*).
∴当n≥2时,
| 1 |
| an-1 |
| 1 |
| 2n2+2n-1 |
| 1 |
| 2n2+2n-4 |
| 1 |
| 6 |
| 1 |
| n-1 |
| 1 |
| n+2 |
∴
| 1 |
| a1-1 |
| 1 |
| a2-1 |
| 1 |
| an-1 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| n-1 |
| 1 |
| n+2 |
=
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
<
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 23 |
| 36 |
| 24 |
| 36 |
| 2 |
| 3 |
∴
| 1 |
| a1-1 |
| 1 |
| a2-1 |
| 1 |
| an-1 |
| 2 |
| 3 |
点评:本题考查了“裂项求和”与“放缩法”证明不等式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=
,则球O的内接正四面体的棱长等于( )
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、2
|