题目内容

已知数列{an}的通项公式an=2n(n+1),证明:
1
a1-1
+
1
a2-1
+…+
1
an-1
2
3
(n∈N*).
考点:数列的求和
专题:等差数列与等比数列
分析:an=2n(n+1),可得:当n≥2时,
1
an-1
=
1
2n2+2n-1
1
2n2+2n-4
=
1
6
(
1
n-1
-
1
n+2
)
,利用“裂项求和”与“放缩法”即可得出.
解答: 证明:∵an=2n(n+1),
∴当n≥2时,
1
an-1
=
1
2n2+2n-1
1
2n2+2n-4
=
1
6
(
1
n-1
-
1
n+2
)

1
a1-1
+
1
a2-1
+…+
1
an-1
1
3
+
1
6
[(1-
1
4
)+(
1
2
-
1
5
)+(
1
3
-
1
6
)+(
1
4
-
1
7
)
+…+(
1
n-1
-
1
n+2
)]

=
1
3
+
1
6
(1+
1
2
+
1
3
-
1
n
-
1
n+1
-
1
n+2
)

1
3
+
1
6
×(1+
1
2
+
1
3
)
=
23
36
24
36
=
2
3
(n∈N*).
1
a1-1
+
1
a2-1
+…+
1
an-1
2
3
(n∈N*).
点评:本题考查了“裂项求和”与“放缩法”证明不等式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网