题目内容

1.已知tan α=$\frac{2}{3}$,求下列各式的值:
(1)$\frac{cosα-sinα}{cosα+sinα}$+$\frac{cosα+sinα}{cosα-sinα}$;
(2)$\frac{1}{sinαcosα}$.

分析 利用本题主要考查同角三角函数的基本关系,求得要求式子的值.

解答 解:∵tan α=$\frac{2}{3}$,
∴(1)$\frac{cosα-sinα}{cosα+sinα}$+$\frac{cosα+sinα}{cosα-sinα}$=$\frac{1-tanα}{1+tanα}$+$\frac{1+tanα}{1-tanα}$=$\frac{\frac{1}{3}}{\frac{5}{3}}$+$\frac{\frac{5}{3}}{\frac{1}{3}}$=$\frac{26}{5}$.
(2)$\frac{1}{sinαcosα}$=$\frac{{sin}^{2}α{+cos}^{2}α}{sinαcosα}$=tanα+$\frac{cosα}{sinα}$=tanα+$\frac{1}{tanα}$=$\frac{2}{3}$+$\frac{3}{2}$=$\frac{13}{6}$.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网