题目内容

13.已知{an}是等比数列,a2=1,a5=$\frac{1}{8}$,设Sn=a1a2+a2a3+…+anan+1(n∈N*),λ为实数.若对?n∈N*都有λ>Sn成立,则λ的取值范围是[$\frac{8}{3}$,+∞).

分析 利用等比数列通项公式列出方程组,求出${a}_{1}=2,q=\frac{1}{2}$,从而得到${a}_{n}{a}_{n+1}=(\frac{1}{2})^{n-2}(\frac{1}{2})^{n-1}=(\frac{1}{2})^{2n-3}$,再利用等比数列前n项和公式求出Sn=a1a2+a2a3+…+anan+1=$\frac{8}{3}[1-(\frac{1}{4})^{n}]$<$\frac{8}{3}$,由此能求出λ的取值范围.

解答 解:∵{an}是等比数列,a2=1,a5=$\frac{1}{8}$,
∴$\left\{\begin{array}{l}{{a}_{1}q=1}\\{{a}_{1}{q}^{4}=\frac{1}{8}}\end{array}\right.$,解得${a}_{1}=2,q=\frac{1}{2}$,
∴${a}_{n}=2×(\frac{1}{2})^{n-1}$=($\frac{1}{2}$)n-2
∴${a}_{n}{a}_{n+1}=(\frac{1}{2})^{n-2}(\frac{1}{2})^{n-1}=(\frac{1}{2})^{2n-3}$,
∴Sn=a1a2+a2a3+…+anan+1(n∈N*
=($\frac{1}{2}$)-1+($\frac{1}{2}$)+($\frac{1}{2}$)3+…+($\frac{1}{2}$)2n-3
=$\frac{2[1-(\frac{1}{4})^{n}]}{1-\frac{1}{4}}$=$\frac{8}{3}[1-(\frac{1}{4})^{n}]$<$\frac{8}{3}$,
∵对?n∈N*都有λ>Sn成立,
∴$λ≥\frac{8}{3}$,即λ的取值范围是[$\frac{8}{3}$,+∞).
故答案为:[$\frac{8}{3}$,+∞).

点评 本题考查等比数列通项公式、前n项和公式、不等式性质等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网