题目内容
8.分析 由函数的最值求出A、B,由周期求出ω,由特殊点的坐标求出φ的值,可得f(x)的解析式,从而求得f(π)的值.
解答 解:由函数f(x)=Asin(ωx+φ)+B(A>0,ω,0,|φ|<$\frac{π}{2}$)的部分图象,
可得A+B=4,-A+B=0,$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{5π}{12}$-$\frac{π}{6}$,
求得B=2,A=2,ω=2,∴f(x)=2sin(2x+φ)+2.
再根据图象过点($\frac{5π}{12}$,2),可得 sin(2•$\frac{5π}{12}$+φ)=0,∴φ=$\frac{π}{6}$,
f(x)=2sin(2x+$\frac{π}{6}$)+2,∴f(π)=2sin(2π+$\frac{π}{6}$)+2=3,
故答案为:3.
点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A、B,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.
练习册系列答案
相关题目
18.已知f(x)=2x+1,则f(2)=( )
| A. | 5 | B. | 0 | C. | 1 | D. | 2 |
13.设曲线y=ax2在点x=1处的切线与直线2x-y+b=0平行,则a=( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | -1 |