题目内容
17.若不等式ax2+bx-2>0的解集为(-4,1),则a+b等于2.分析 根据一元二次不等式与对应方程的关系,利用根与系数的关系求出a、b的值,即可求出a+b.
解答 解:∵不等式ax2+bx-2>0的解集为(-4,1),
∴-4和1是ax2+bx-2=0的两个根,
即$\left\{\begin{array}{l}{-4+1=-\frac{b}{a}}\\{-4×1=\frac{-2}{a}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=\frac{3}{2}}\end{array}\right.$;
∴a+b=$\frac{1}{2}$+$\frac{3}{2}$=2.
故答案为:2.
点评 本题考查了一元二次不等式的解集与所对应一元二次方程根的关系,是基础题.
练习册系列答案
相关题目
7.已知样本x1,x2,…xm的平均数为$\overline x$,样本y1,y2,…yn的平均数$\overline y$,若样本x1,x2,…xm,y1,y2,…yn的平均数$\overline z$=α$\overline x$+(1-α)$\overline y$,其中0<α≤$\frac{1}{2}$,则m,n的大小关系为( )
| A. | m<n | B. | m>n | C. | m≤n | D. | m≥n |
5.若方程(m-1)x2+(3-m)y2=(m-1)(3-m)表示焦点在y轴上的椭圆,则实数m的取值范围是( )
| A. | (-∞,1) | B. | (1,2) | C. | (2,3) | D. | (3,+∞) |
9.中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井.以节约勘探费用.勘探初期数据资料见如表:
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehatb,\widehata$的值与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?
($\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n_x^{-2}}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x_{2i-1}}^2=94,\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}}$)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是优质井的概率.
| 井号I | 1 | 2 | 3 | 4 | 5 | 6 |
| 坐标(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
| 钻探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
| 出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehatb,\widehata$的值与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?
($\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n_x^{-2}}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x_{2i-1}}^2=94,\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}}$)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是优质井的概率.
6.某运动员射击一次所得环数X的分布如下:
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.
(I)求该运动员两次都命中7环的概率;
(Ⅱ)求ξ的数学期望Eξ.
| X | 0~6 | 7 | 8 | 9 | 10 |
| P | 0 | 0.2 | 0.3 | 0.3 | 0.2 |
(I)求该运动员两次都命中7环的概率;
(Ⅱ)求ξ的数学期望Eξ.