题目内容

16.在平面直角坐标系xOy中,将函数y=$\sqrt{3+2x-{x}^{2}}$-$\sqrt{3}$(x∈[0,2])的图象绕坐标原点O按逆时针方向旋转角θ,若?θ∈[0,a],旋转后所得的曲线都是某个函数的图象,则a的最大值为60°.

分析 确定函数在x=0处,函数图象的切线斜率,可得倾斜角,从而可得结论.

解答 解:由题意,函数图象如图所示,函数在[0,1]上为增函数,在[1,2]上为减函数.
设函数在x=0处,切线斜率为k,则k=f'(0)
∵f'(x)=$\frac{1}{2}$•$\frac{-2(x-1)}{\sqrt{3+2x-{x}^{2}}}$,
∴k=f'(0)=$\frac{\sqrt{3}}{3}$,可得切线的倾斜角为30°,
因此,要使旋转后的图象仍为一个函数的图象,旋转θ后的切线倾斜角最多为90°,也就是说,最大旋转角为90°-30°=60°,即θ的最大值为60°.
故答案为:60°

点评 本题考查了导数的几何意义和函数的图象与图象变化等知识点,将函数图象绕原点逆时针旋转θ后,所得曲线仍是一个函数的图象,求角θ的最大值,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网