题目内容
已知|
|=1,|
|=2,
垂直于(
+
),则
,
的夹角为( )
| a |
| b |
| a |
| a |
| b |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:平面向量数量积的运算
专题:计算题
分析:
⊥(
+
)等价于
•(
+
)=0,利用向量数量积运算求夹角.
| a |
| a |
| b |
| a |
| a |
| b |
解答:
解:∵
⊥(
+
),∴
•(
+
)=0,即
2+
•
=0,1+2cosθ=0,cosθ=-
.
∴θ=
故选C
| a |
| a |
| b |
| a |
| a |
| b |
| a |
| a |
| b |
| 1 |
| 2 |
∴θ=
| 2π |
| 3 |
故选C
点评:本题考查向量数量积运算法则,夹角的计算.简单题目.
练习册系列答案
相关题目
对于每个自然数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于An,Bn两点,以|AnBn|表示该两点间的距离,则|A1B1|+|A2B2|+…+|A2011B2011|的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
若f(x)满足关系式f(x)+2f(
)=3x,则f(2)的值为( )
| 1 |
| x |
| A、1 | ||
| B、-1 | ||
C、-
| ||
D、
|
已知平面向量
=(x1,y1),
=(x2,y2),若|
|=4,|
|=9,
•
=-36,则
的值为( )
| a |
| b |
| a |
| b |
| a |
| b |
| x1+y1 |
| x2+y2 |
A、-
| ||
B、
| ||
C、-
| ||
D、
|
角-2013°是( )
| A、第一象限角 |
| B、第二象限角 |
| C、第三象限角 |
| D、第四象限角 |
| BF |
| 1 |
| 2 |
| FC |
| FD |
| FE |
A、-
| ||
B、-
| ||
C、-
| ||
D、-
|
椭圆9x2+4y2=144内一点P(2,3),过P的弦恰好以P为中点,这条弦所在方程为( )
| A、9x+4y-144=0 |
| B、4x+9y-144=0 |
| C、3x+2y-12=0 |
| D、2x+3y-12=0 |
如图,该程序语句输出的结果S为( )

| A、17 | B、19 | C、21 | D、23 |