ÌâÄ¿ÄÚÈÝ
17£®£¨1£©ÏÖÐèÒª´ÓµÚһŞÍ×ùµÄ6λ¼Î±öA¡¢B¡¢C¡¢D¡¢E¡¢FÖÐËæ»ú³éÈ¡2ÈËÉĮ̈³é½±£¬Çó¼Î±öAºÍ¼Î±öBÖÁÉÙÓÐÒ»ÈËÉĮ̈³é½±µÄ¸ÅÂÊ£»
£¨2£©³é½±»î¶¯µÄ¹æÔòÊÇ£º¼Î±öͨ¹ý²Ù×÷°´¼üʹµçÄÔ×Ô¶¯²úÉúÁ½¸ö[0£¬1]Ö®¼äµÄËæ»úÊýx£¬y£¬²¢°´ÈçͼËùʾµÄ³ÌÐò¿òͼִÐУ®ÈôµçÄÔÏÔʾ¡°Öн±¡±£¬Ôò¸Ã¼Î±öÖн±£»ÈôµçÄÔÏÔʾ¡°Ð»Ð»¡±£¬Ôò²»Öн±£®Çó¸Ã¼Î±öÖн±µÄ¸ÅÂÊ£®
·ÖÎö £¨1£©¸ù¾Ý¹Åµä¸ÅÐ͵ĸÅÂʹ«Ê½£¬¿ÉµÃAºÍBÖÁÉÙÓÐÒ»ÈËÉĮ̈³é½±µÄ¸ÅÂÊ£»
£¨2£©È·¶¨Âú×ã0¡Üx¡Ü1£¬0¡Üy¡Ü1µãµÄÇøÓò£¬ÓÉÌõ¼þ$\left\{\begin{array}{l}{\stackrel{2x-y-1¡Ü0}{0¡Üx¡Ü1}}\\{0¡Üy¡Ü1}\end{array}\right.$£¬µ½µÄÇøÓòΪͼÖеÄÒõÓ°²¿·Ö£¬¼ÆËãÃæ»ý£¬¿ÉÇó¸Ã´ú±íÖн±µÄ¸ÅÂÊ£®
½â´ð ½â£º£¨1£©6λ¼Î±ö£¬´ÓÖгéÈ¡2ÈËÉĮ̈³é½±µÄ»ù±¾Ê¼þÓУ¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬d£©£¬£¨a£¬e£©£¬£¨a£¬f£©£¬£¨b£¬c£©£¬£¨b£¬d£©£¬£¨b£¬e£©£¬£¨b£®f£©£¬£¨c£¬d£©£¬£¨c£¬e£©£¬£¨c£¬f£©£¬£¨d£¬e£©£¬£¨d£¬f£©£¬£¨e£¬f£©¹²15ÖÖ£¬ÆäÖÐaºÍbÖÁÉÙÓÐÒ»ÈËÉĮ̈³é½±µÄ»ù±¾Ê¼þÓÐ9ÖÖ£¬
¡àaºÍbÖÁÉÙÓÐÒ»ÈËÉĮ̈³é½±µÄ¸ÅÂÊΪ$\frac{9}{15}$=$\frac{3}{5}$£»
£¨2£©ÓÉÒÑÖª0¡Üx¡Ü1£¬0¡Üy¡Ü1£¬µã£¨x£¬y£©ÔÚÈçͼËùʾµÄÕý·½ÐÎOABCÄÚ£¬![]()
ÓÉÌõ¼þ$\left\{\begin{array}{l}{\stackrel{2x-y-1¡Ü0}{0¡Üx¡Ü1}}\\{0¡Üy¡Ü1}\end{array}\right.$£¬µÃµ½µÄÇøÓòΪͼÖеÄÒõÓ°²¿·Ö£¬
ÓÉ2x-y-1=0£¬Áîy=0£¬¿ÉµÃx=$\frac{1}{2}$£¬Áîy=1£¬¿ÉµÃx=1£¬
¡àÔÚx£¬y¡Ê[0£¬1]ʱÂú×ã2x-y-1¡Ü0µÄÇøÓòµÄÃæ»ýΪSÒõ=$\frac{1}{2}¡Á$£¨1+$\frac{1}{2}$£©¡Á1=$\frac{3}{4}$£®
¡à¸Ã´ú±íÖн±µÄ¸ÅÂÊΪ$\frac{\frac{3}{4}}{1}$=$\frac{3}{4}$£®
µãÆÀ ±¾Ì⿼²é¸ÅÂÊÓëͳ¼ÆÖªÊ¶£¬¿¼²é·Ö²ã³éÑù£¬¿¼²é¸ÅÂʵļÆË㣬ȷ¶¨¸ÅÂʵÄÀàÐÍÊǹؼü£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | ∅ | B£® | U | C£® | {1£¬2} | D£® | {3} |
| A£® | 2016 | B£® | -2016 | C£® | 3024 | D£® | -3024 |
| A£® | 1.4 | B£® | 1.9 | C£® | 2.2 | D£® | 2.9 |
| A£® | 1.2 | B£® | 1.3 | C£® | 1.4 | D£® | 1.5 |
| A£® | -$\frac{\sqrt{3}}{2}$ | B£® | -$\frac{1}{2}$ | C£® | 0 | D£® | $\frac{1}{2}$ |
| A£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶È | B£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È | ||
| C£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶È | D£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È |