题目内容

2.函数f(x)=$\frac{2}{si{n}^{2}x}$+$\frac{1}{co{s}^{2}x}$的最小值是3+2$\sqrt{2}$.

分析 利用“乘1法”与基本不等式的性质、三角函数基本关系式即可得出.

解答 解:f(x)=$\frac{2}{si{n}^{2}x}$+$\frac{1}{co{s}^{2}x}$=(sin2x+cos2x)$(\frac{2}{si{n}^{2}x}+\frac{1}{co{s}^{2}x})$=3+$\frac{2co{s}^{2}x}{si{n}^{2}x}+\frac{si{n}^{2}x}{co{s}^{2}x}$≥3+2$\sqrt{2}$,当且仅当$tanx=±\sqrt{2}$时取等号.
∴函数f(x)=$\frac{2}{si{n}^{2}x}$+$\frac{1}{co{s}^{2}x}$的最小值是3+2$\sqrt{2}$,
故答案为:3+2$\sqrt{2}$.

点评 本题考查了“乘1法”与基本不等式的性质、三角函数基本关系式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网