ÌâÄ¿ÄÚÈÝ
11£®£¨¢ñ£©ÔÚͼÖÐ×÷³öÆ½ÃæMNPQ£¬Ê¹ÃæMNPQ¡¬ÃæSAD£¨²»ÒªÇóÖ¤Ã÷£©£»
£¨¢ò£©Èô$\overrightarrow{AQ}=¦Ë\overrightarrow{AB}$£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹¶þÃæ½ÇM-PQ-BµÄÆ½Ãæ½Ç´óСΪ60¡ã£¿Èô´æÔÚ£¬Çó³öµÄ¦ËÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©QÊÇABµÄÖеã»Í¼¼´¿É£®
£¨¢ò£©Ö¤Ã÷AD¡ÍBD£¬ÒÔDΪԵ㣬ֱÏßDAΪxÖᣬֱÏßDBΪyÖᣬֱÏßDSΪzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Çó½âÆ½ÃæµÄ·¨ÏòÁ¿£¬ÃæABCDµÄ·¨ÏòÁ¿£¬ÀûÓöþÃæ½ÇM-PQ-BΪ60¡ã£¬Çó³ö¦Ë¼´¿É£®
½â´ð ½â£º£¨¢ñ£©Èçͼ£¬QÊÇABµÄÖе㣨ÈôNP£®PQδ×÷³ÉÐéÏߣ¬¿ÛÁ½·Ö£©¡£¨4·Ö£©![]()
£¨¢ò£©ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬ÉèAB=2AD=4£¬¡ÏDCB=60¡ã£¬ËùÒÔÓÉÓàÏÒ¶¨ÀíÇóµÃ$BD=2\sqrt{3}$£¬ÓÐAB2=AD2+BD2£¬ËùÒÔAD¡ÍBD£¬¡£®£¨5·Ö£©
ÒÔDΪԵ㣬ֱÏßDAΪxÖᣬֱÏßDBΪyÖᣬֱÏßDSΪzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
ÇÒ$A£¨{2£¬0£¬0}£©£¬B£¨{0£¬2\sqrt{3}£¬0}£©£¬S£¨{0£¬0£¬2}£©£¬M£¨{0£¬\sqrt{3}£¬1}£©$£¬![]()
ÓÖ$\overrightarrow{AQ}=¦Ë\overrightarrow{AB}$£¬ÉèQ£¨x£¬y£¬z£©£¬Ôò$£¨{x-2£¬y£¬z}£©=¦Ë£¨{-2£¬2\sqrt{3}£¬0}£©$
¼´$Q£¨{2-2¦Ë£¬2\sqrt{3}¦Ë£¬0}£©$¡£¨7·Ö£©
ÉèÆ½ÃæµÄ·¨ÏòÁ¿Îª$\overrightarrow n=£¨{x£¬y£¬z}£©$
ÓÉ$\left\{{\begin{array}{l}{\overrightarrow n•\overrightarrow{AD}=0}\\{\overrightarrow n•\overrightarrow{MQ}=0}\end{array}}\right.$µÃ$\overrightarrow n=£¨{0£¬1£¬\sqrt{3}£¨{2¦Ë-1}£©}£©$£¬¡£¨9·Ö£©
Ò×ÖªÃæABCDµÄ·¨ÏòÁ¿Îª$\overrightarrow m=£¨{0£¬0£¬1}£©$
Ҫʹ¶þÃæ½ÇM-PQ-BΪ60¡ã£¬ÔòÓÐ$cos{60¡ã}=\frac{1}{2}=\frac{{|{\overrightarrow m\overrightarrow{•n}}|}}{{|{\overrightarrow m}||{\overrightarrow n}|}}=\frac{{|{\sqrt{3}£¨{2¦Ë-1}£©}|}}{{\sqrt{1+3{{£¨{2¦Ë-1}£©}^2}}}}$½âµÃ$¦Ë=\frac{1}{3}»ò¦Ë=\frac{2}{3}$¡£®£¨11·Ö£©
ÓÉͼ¿ÉÖª£¬ÒªÊ¹¶þÃæ½ÇM-PQ-BΪ60¡ã£¬Ôò$¦Ë=\frac{1}{3}$¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÆ½ÃæÓëÆ½ÃæÆ½ÐеÄÅжϣ¬¶þÃæ½ÇµÄÆ½Ãæ½ÇµÄÇó·¨ÓëÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦ÒÔ¼°×ª»¯Ë¼Ï룮
| A£® | 10 | B£® | 11 | C£® | 12 | D£® | 13 |
| A£® | $-\frac{4}{5}+\frac{3}{5}i$ | B£® | $-\frac{3}{5}+\frac{4}{5}i$ | C£® | $-\frac{1}{2}+\frac{3}{2}i$ | D£® | $-\frac{1}{2}-\frac{3}{2}i$ |
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | 1 | B£® | $\sqrt{2}$ | C£® | $\sqrt{3}$ | D£® | 2 |