题目内容

11.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤2x\\ x+y≥1\\ y≥-1\end{array}\right.$,则x+2y的最小值是(  )
A.$-\frac{5}{2}$B.0C.$\frac{5}{3}$D.$\frac{5}{2}$

分析 由约束条件直线可行域,令z=x+2y,化为$y=-\frac{x}{2}+\frac{z}{2}$,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}y≤2x\\ x+y≥1\\ y≥-1\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{y=-1}\\{x+y=1}\end{array}\right.$,解得A(2,-1),
令z=x+2y,得$y=-\frac{x}{2}+\frac{z}{2}$,
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过A(2,-1)时,
直线在y轴上的截距最小,z有最小值为0.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网