题目内容
5.一个几何体的三视图如图所示,则这个几何体的体积为( )| A. | $\frac{{\sqrt{2}}}{3}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | $4\sqrt{3}$ |
分析 该几何体为正八面体,即两个全等的正四棱锥,棱长为1,棱锥的高为$\frac{\sqrt{2}}{2}$,即可求出体积
解答 解:该几何体为正八面体,即两个全等的正四棱锥,棱长为1,棱锥的高为$\frac{\sqrt{2}}{2}$,
所以,其体积为:2×$\frac{1}{3}$(1×1)×$\frac{\sqrt{2}}{2}$=$\frac{{\sqrt{2}}}{3}$,
故选:A
点评 本题考查的知识点棱锥的体积和表面积,空间几何体的三视图.
练习册系列答案
相关题目
16.在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的$\frac{1}{3}$.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
20.集合P={x|x+$\frac{1}{x}$≤2,x∈Z},集合Q={x|x2+2x-3>0},则P∩∁RQ=( )
| A. | [-3,0) | B. | {-3,-2,-1} | C. | {-3,-2,-1,0,1} | D. | {-3,-2,-1,1} |
17.
某学校对男女学生进行有关“习惯与礼仪”的调查,分别随机抽查了18名学生进行评分(百分制:得分越高,习惯与礼仪越好),评分记录如下:
男生:44,46,46,52,54,55,56,57,58,58,63,66,70,73,75,85,90,94.
女生:51,52,55,58,63,63,65,69,69,70,74,78,77,77,83,83,89,100
(1)请用茎叶图表示上面的数据,并通过茎叶图比较男女生“习惯与礼仪”评分的平均值及分散程度(不要求计算出具体的值,给出结论即可).
(2)记评分在60分以下的等级为较差,评分在60分以上的等级为较好,请完成2×2列联表,并判断是否有95%的把握认为“习惯与礼仪”与性别有关?并说明理由.
附:
男生:44,46,46,52,54,55,56,57,58,58,63,66,70,73,75,85,90,94.
女生:51,52,55,58,63,63,65,69,69,70,74,78,77,77,83,83,89,100
(1)请用茎叶图表示上面的数据,并通过茎叶图比较男女生“习惯与礼仪”评分的平均值及分散程度(不要求计算出具体的值,给出结论即可).
(2)记评分在60分以下的等级为较差,评分在60分以上的等级为较好,请完成2×2列联表,并判断是否有95%的把握认为“习惯与礼仪”与性别有关?并说明理由.
| 等级 性别 | 较差 | 较好 | 合计 |
| 男生 | |||
| 女生 | |||
| 合计 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 | K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ |
| k | 3.841 | 6.635 | 10.828 |
14.检验双向分类列联表数据下,两个分类特征(即两个因素变量)之间是彼此相关还是相互独立的问题,在常用的方法中,最为精确的做法是( )
| A. | 三维柱形图 | B. | 二维条形图 | C. | 等高条形图 | D. | 独立性检验 |