题目内容
11.已知向量$\overrightarrow{a}$=(2,x),$\overrightarrow{b}$=(-1,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x的值是( )| A. | 1 | B. | 2 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
分析 直接由向量垂直的坐标运算求解.
解答 解:∵$\overrightarrow{a}$=(2,x),$\overrightarrow{b}$=(-1,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴2×(-1)+2x=0,解得x=1.
故选:A.
点评 本题考查平面向量的数量积运算,考查了向量垂直的坐标表示,是基础题.
练习册系列答案
相关题目
19.函数f(x)=$\sqrt{1-{{log}_2}x}$的定义域为( )
| A. | (0,+∞) | B. | (0,2) | C. | (2,+∞) | D. | (0,2] |
6.实数x、y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,那么μ=22x-y+2的最大值为( )
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
16.已知集合M={x∈R|y=lg(4-x2)},则M∩N*=( )
| A. | (-1,1] | B. | {1} | C. | (0,2) | D. | {0,1} |
3.某中学有一调查小组为了解本校学生假期中白天在家时间的情况,从全校学生中抽取120人,统计他们平均每天在家的时间(在家时间在4小时以上的就认为具有“宅”属性,否则就认为不具有“宅”属性)
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否具有‘宅’属性与性别有关?”
(2)采用分层抽样的方法从具有“宅”属性的学生里抽取一个6人的样本,其中男生和女生各多少人?从6人中随机选取3人做进一步的调查,求选取的3人至少有1名女生的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| 具有“宅”属性 | 不具有“宅”属性 | 总计 | |
| 男生 | 20 | 50 | 70 |
| 女生 | 10 | 40 | 50 |
| 总计 | 30 | 90 | 120 |
(2)采用分层抽样的方法从具有“宅”属性的学生里抽取一个6人的样本,其中男生和女生各多少人?从6人中随机选取3人做进一步的调查,求选取的3人至少有1名女生的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 5.635 | 7.879 | 10.828 |